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Abstract. Although the memory access latency can be tolerated by
maintaining a high number of in-flicat instructions, the continuous in-
crease in the gap between processer and memmory speed increases the
number of in-flight instructions reguired, cansing, sealability problens
in the design of the critical structures of the processor. Our approach
to support thousands of in-flight instructions, while avoiding scalability
problems. is the kilo-instruction processor. This affordable architecture
relies on an intelligent use of the available resources iustead of simply
up-sizing the processor structures. The high munber of in-flight instruc-
tions waintained by our architecture allows it to achieve a higl perfor-
tance, eveu in the presence of large wewory Liteucies, which makes the
kilo-instruction processor an efficient architecture for dealing with future

weinory lateucies.

1 Introduction

A lot of research effort is devoted Lo design new architectural techniques able
to take advantage of the contituous improvement i microprocessor technology.
The current. trend leads to processors with longer pipelines. which combines
with the Gster techimology to allow an important increase in the processor clock
frequency every year.

[Towever. che main memory access latency has become an iimportant luniting
factor for the performance of high-frequency microprocessors. The DRANI tech-
nology improves at a speed much lower than the microprocessor technology. Due
to this fact. each increase in the proces:or clock frequency causes that a higher
number of processor cycles ave requived to access the main memory. degrading
the potential performance achievable with the clock frequency improvemeut.

If the wain memory access lateney increase continues. it will be a harmful
problem for future microprocessor technologies. Therefore. dealing with the gap
between the processor and the memory speed is vital in order to allow high-
frequency microprocessors (0 achiceve all their potential performmance. A plethora
of well-known techniques has been proposed to overcome the niain memory la-
teney. like cache hicravchies or data prefetehing. but they do not completely
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solve the problem. A different approach to tolerate the main memory access la-
tency is to dramatically increase the number of in-flight instructions that can be
maintained by the processor.

92 Increasing the Number of In-Flight Instructions

If the processor is able to maintain many in-flight instructions, the latency of
a load instruction that access to the main memory can be overlapped with the
execution of subsequent independent instructions, that is, the processor can hide
the main memory access latency by executing useful work. Figure 1 shows an
example of the impact of increasing the maximum number of in-flight instruc-
tions supported by an eight instruction wide out-of-order superscalar processor.
The main memory access latency is varied from 100 to 1000 cycles. Data is
provided for both the SPECint2000 integer applications and the SPEC{p2000
floating point applications.

A first observation from this figure is that increasing the main memory la-
tency from 100 to 1000 cycles causes enormous performance degradation. In a
processor able to support 128 in-flight instructions, the integer applications suf-
fer from an average 45% performance reduction. The degradation is even higher
for floating point applications, whose average performance is reduced by 65%.

It is also clear that a higher number of in-flight instructions improves the
processor performance. Increasing the number of in-flight instructions from 128
to 4096 in a processor having 100-cycle memory latency, the integer programs
achieve an average 30% perforinance speedup and the floating point programs
achieve 40% speedup. Nevertheless, it is important to note that the improvement
is higher for larger memory access latencies. Increasing the number of in-flight
instructions in a processor having 1000-cycle memory latency causes an average
50% performance improvement for the integer programs, while the floating point
programs achieve a much higher 250% improvement. Such a high speedup is due
to the larger amount of instruction-level parallelism available in floating point
applications. This fact, along with a better branch prediction accuracy, allows
floating point programs to take more advantage of a higher number of in-flight
instructions. :

These results show that increasing the number of in-flight instructions is an
effective way of tolerating large memory access latencies. Although increasing
the main memory latency from 100 to 1000 cycles causes big performance degra-
dation for a processor able to maintain up to 128 in-flight instructions, a higher
number of in-flight instructions alleviates this degradation, especially for float-
ing point applications. If a processor is able to maintain up to 4096 in-flight
instructions, the performance degradation caused by increasing the memory ac-
cess latency from 100 to 1000 cycles is reduced by 10% in integer programs, and
by 50% in floating point programs.

On average, executing integer programs, a processor able to maintain up to
4096 in-flight instructions having 1000-cycle memory latency is only 18% slower
than a processor having 100-cycle latency but only being able to maintain up to
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Fig. 1. Average performance of an 8-wide out-of-order superscalar processor executing
both the SPEC2000 integer and floating point programs. The maximum number of in-
flight instructions supported is varied fromn 128 to 4096, and the main memory access
latency is varied from 100 to 1000 cycles.

128 in-flight instructions. Moreover, when executing floating point applications,
the processor supporting 4096 in-flight instructions with a 1000-cycle memory
latency performs 22% better than the processor supporting 128 in-flight instruc-
tions, even when this processor has a much lower 100-cycle memory latency.

Therefore, future microprocessors will be able to tolerate large memory access
latencies by maintaining thousands of in-flight instructions. The simplest way of
supporting so much in-flight instructions is to scale all the processor resources
involved, that is, the reorder buffer, the physical register file, the general purpose
instruction queues (integer and floating point ones), and the load/store queue.
However, scaling-up the number of entries in these structures is impractical, not
only due to area and power consumption constraints, but also because these
structures often determine the processor cycle time [14].

This is an exciting challenge. On the one hand, a higher number of in-flight
instructions allows to tolerate large memory access latencies and thus provide a
high performance. On the other hand, supporting such a high number of in-fight
instructions involves a difficult scalability problem for the processor design. Our
approach to overcome this scalability problem, while supporting thousands of
in-flight instructions, is the kilo-instruction processor.

3 The Kilo-Instruction Processor

In essence, the kilo-instruction processor [5] is an out-of-order processor that
keeps thousands of in-flight instructions. The main feature of our architecture
is that its implementation is affordable. In order to support thousands of in-
flight instructions, the kilo-instruction architecture relies on an intelligent use
of the processor resources, avoiding the scalability problems caused by an ex-
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cessive increase in the size of the main processor structures. Our design deals
with the problems of each of these structures in an orthogonal way, that is, we
apply particular solutions for each structure. These solutions are described in
the following sections.

3.1 Multi-Checkpointing the Reorder Buffer

In a superscalar out-of-order processor, all instructions are inserted in the re-
order bufler (ROB) after they are fetched and decoded. Therefore, the ROB is
a microarchitectural mechanism that keeps a history window of all in-flight in-
structions, allowing for the precise recovery of the program state at any of those
instructions. Instructions are removed from the ROB when they commit, that is,
when they finish executing and update the architectural state of the Processor.

However, for implementing precise recovery, instructions should be commit-
ted in-order, which is a serious problem in the presence of large memory access
latencies. Let us suppose that a processor has a 128-entry reorder buffer and
500-cycle memory access latency. If a load instruction does not find a data in
the cache hierarchy, it accesses the main memory, and thus it cannot be com-
mitted until its execution finishes 500 cycles later. When the load arrives to the
head of the ROB, it blocks the in-order commit, and no later instruction will
commit until the load finishes. Part of these cycles can be devoted to do useful
work, but the ROB will become full soon, stalling the processor during several
hundreds cycles.

To avoid this, a larger ROB is required, that is, the processor requires a
higher number of in-flight instructions to overlap the load access latency with
the execution of following instructions. Since each in-flight instruction requires
an entry in the ROB, it should contain a high number of entries. However,
scaling-up the number of ROB entries is impractical, mainly due to cycle time
limitations.

The problem here is the presence of a centralized ROB structure devoted to
provide precise recovery of the processor state. The kilo-instruction architecture
solves this problem by replacing the ROB with a multi-checkpointing mechanism
which also allows precise state recovery. Checkpointing is a well established and
used technique (7). The main idea is to create a checkpoint at specific instructions
of the program being executed. This checkpoint can be though of as a snapshot
of the state of the processor at that point, which contains all the information
required to recover the architectural state and restart execution at that point.

The novelty of our mechanism is that the kilo-instruction architecture uses
checkpointing to allow an early release of resources. Figure 2 shows an exam-
Ple of our checkpointing process [5]. First of all, it is important to state that
there always exists at least one checkpoint in the processor (timeline A). The
processor will fetch and issue instructions, taking new checkpoints at particular
ones. If an instruction is miss-speculated or an exception occurs (timeline B),
the processor rolls back to the previous checkpoint and resumes execution from
there. When all instructions between two checkpoints are executed (timeline C),
the last checkpoint is removed and its resources are freed (timeline D).
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Fig. 2. The checkpointing process performed by the kilo-instruction processor.

In case of a long-latency load, which accesses the main memory because its
data is not in the cache hierarchy, the presence of a previous checkpoint allows
that all the following instructions independent of the load result can finalize
their execution and commit out-of-order, that is, they release their associated
resources without having to wait until the load commits several hundreds cycles
later. As a consequence, the multi-checkpointing mechanism makes it possible for
the kilo-instruction processor to overlap large memory access latencies with the
execution of thousands of following independent instructions without requiring
an unimplementable centralized ROB structure with thousands of entries.

3.2 Instruction Queues

At the same time that instructions are inserted in the ROB, they are also in-
serted in their corresponding instruction queues. Each instruction should wait
in an instruction queue until its execution finishes. All the instructions follow-
ing 2 long-latency load can finalize their execution and be removed from the
instruction queues due to the presence of a previous checkpoint. However, all
the dependent instructions should be kept in the instruction queues until they
finish their execution several hundreds cycles later.

This means that, in order to hide the load latency with the execution of
thousands of following instructions, a typical instruction queue design should
contain a high amount of entries, which makes it unpractical. The kilo-instruction
processor solves this problem by taking advantage of the different waiting times
of the instructions in the queues. These instructions can be divided in two types:
blocked-short instructions when they are waiting for a functional unit or for
results from short-latency operations, and blocked-long instructions when they
are waiting for some long-latency instruction to complete.

Figure 3 shows the accumulative distribution of allocated entries in the in-
teger queue (for SPECint2000 programs) and in the floating point queue (for
SPEC{p2000 programs) with respect to the amount of total in-flight instructions.
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Fig. 3. Accumulative distribution of allocated entries in the integer queue (using the
SPECint2000 programs) and in the floating point queue (using the SPECfp2000 pro-
grams) with respect to the amount of total in-flight instructions for a processor able
to maintain up to 2048 in-flight instructions.

This data corresponds to a processor able to maintain up to 2048 in-flight in-
structions and having 500-cycle memory access latency. For example, in floating
point applications, 50% of the time there are 1600 or less in-flight instructions,
requiring 400 floating point queue entries. On average, the amount of entries
allocated in the instruction queues is much smaller than the amount of in-flight
instructions. However, to cope with over 90% of the scenarios the processor is
going to face, the integer queue requires 300 entries and the floating point queue
requires 500 entries, which is definitely going to affect the cycle time [14].

Fortunately, not all instructions behave in the same way. Blocked-long in-
structions represent by far the largest fraction of entries allocated in the instruc-
tion queues. These instructions are dependent on long-latency loads or on their
dependents. Since these instructions take a very long time to even get issued for
execution, maintaining them in the instruction queues just takes away issue slots
from other instructions that will be executed more quickly. Multilevel queues can
be used to track this type of instructions, delegating their handling to slower,
but larger and less complex structures. Some previous studies have proposed
such multilevel queues (8, 2], but they require a wake-up and select logic which
might be on the critical path, thus potentially affecting the cycle time.

The kilo-instruction processor deals with this problem by using a simple
secondary buffer called Slow Lane Instruction Queue (SLIQ). This queue is a
FIFO-like structure that enables a simple but efficient wakeup and select pro-
cess [5]. All the instructions dependent on a long-latency load are removed from
the general purpose instruction queues and stored in-order in the SLIQ, freeing
entries from the instruction queues that can be used by short-latency operations.
Once the long-latency load finishes its execution, the dependent instructions are
removed from the SLIQ and inserted back into their corresponding instruction
queue, where they can start their execution. This mechanism allows to effec-
tively implement the functionality of a large instruction queue while requiring
a reduced number of entries, and thus it makes it possible to support a high
number of in-flight instructions without scaling-up the instruction queues.
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3.3 Load/Store Queue

Load and store instructions are inserted in the load /store queue at the same time
they are inserted in the ROB. This queue takes care of memory disambiguation,
that is, it guarantees that load and stores arrive to the memory in the correct
order. Increasing the number of in-flight instructions also increases the number of
loads and stores that should be taken into account, which can make the memory
disambiguation logic a true bottleneck both in latency and power.

As for the instruction queues, the solution for this problem is using multilevel
structures. Some recent works (1,15, 16] describe such multilevel structures for
performing memory disambiguation in a load/store queue containing a great
amount of instructions. These works propose different filtering schemes that use
two-level structures for storing most or all instructions in a big structure, while
a smaller structure is used to easily check the dependencies.

3.4 Physical Register File

Each instruction that generates a result uses a physical register to store it.
Therefore, maintaining thousands of in-flight instructions involves that a high
amount of physical registers is required. This high amount of registers increases
the register file access time, especially taking into account the large number of
access ports needed by this structure to implement an efficient issue mechanism.
Nevertheless, since the physical register file is a critical component of super-
scalar processors, increasing its access time will surely involve an increase in the
processor cycle time.

In order to reduce the number of physical register needed, the kilo-instruction
processor relies on early register release and late register allocation. Figure 4
shows the accumulative distribution of allocated integer registers (SPECint2000
programns) and floating point registers (SPECfp2000 programs) with respect to
the amount of total in-flight instructions. This data is provided for a machine
able to maintain up to 2048 in-flight instructions and having 500-cycle memory
access latency.

Registers are classified in four categories. Live registers contain values cur-
rently in use. Blocked-short and blocked-long registers have been allocated dur-
ing rename, but are blocked because the corresponding instructions are waiting
for the execution of predecessor instructions. Blocked-short registers are waiting
for instructions that will issue shortly, while blocked-long registers are waiting
for long-latency instructions. Finally, dead registers are no longer in use, but
they are still allocated because the corresponding instructions have not yet com-
mitted.

It is clear that blocked-long and dead registers constitute the largest fraction
of allocated registers. Some previous proposals describe how to made these reg-
isters available to other instructions, reducing the total amount of physical regis-
ters needed. In order to avoid blocked-long registers, the assignment of physical
registers can be delayed using virtual tags [11]. These virtual register mapping
keeps track of the rename dependencies, making unnecessary the assignment of
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Fig. 4. Accumulative distribution of allocated integer registers (using the SPECint2000
programs) and floating point registers (using the SPECf{p2000 programs) with respect
to the amount of total in-flight instructions for a processor able to maintain up to 2048
in-flight instructions.

a physical register to an instruction until it starts execution. Dead registers can
also be eliminated by using mechanisms for early register recycling [12]. These
mechanisms release a physical register when it is possible to guarantee that it
will not be used again, regardless the corresponding instruction has committed
or not.

The kilo-instruction architecture combines these two techniques with check-
pointing, leading to an aggressive register recycling mechanism that we call
ephemeral registers [4, 10]. This is the first proposal that integrates both a mech-
anism for delayed register allocation and early register release and analyzes the
synergy between them. The combination of these two techniques with check-
pointing allows the processor to non-conservatively deallocate registers, making
it possible to support thousands of in-flight instructions without requiring an
excessive number of registers.

4 Real Performance

Figure 5 provides some insight about the performance achievable by the kilo-
instruction processor. It shows the average performance of a kilo-instruction pro-
cessor executing the SPECint2000 floating point applications. The kilo-instruction
processor modeled is able to support up to 2048 in-flight instructions, but it uses
just 128-entry instruction queues. It also uses 32KB separate instruction and
data caches as well as an unified 1MB second level cache. The figure is divided
into three zones, each of them comprising the results for 100, 500, and 1000
cycles of main memory access latency. Each zone is composed of three groups
of two bars, corresponding to 512, 1024, and 2048 virtual registers or tags [11].
The two bars of each group represent the performance using 256 or 512 physical
registers.

In addition, each zone of the figure has two lines which represent the per-
formance obtained by a baseline superscalar processor, able to support up to
128 in-flight instructions, and a limit unfeasible microarchitecture where all
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Fig. 5. Average performance results of the kilo-instruction processor executing the
SPECfp2000 programs with respect to the amount of virtual registers, the memory
latency, and the amount of physical registers.

the resources have been up-sized to allow up to 4096 in-flight instructions.
The main observation is that the kilo-instruction processor provides important
performance improvements over the baseline superscalar processor. Using 2048
virtual tags, the kilo-instruction processor is more than twice faster than the
baseline when the memory access latency is 500 cycles or higher. Moreover, a
kilo-instruction processor having 1000 cycles memory access latency is only a
5% slower than the baseline processor having a memory access latency 10 times
lower.

These results show that the kilo-instruction processor is an effective way of
approaching the unimplementable limit machine in an affordable way. However,
there is still room for improvement. The distance between the kilo-instruction
processor performance and the limit machine is higher for larger memory access
latencies. This causes that, although the performance results for more aggressive
setups nearly saturate for a memory access latency of 100 or 500 cycles, the
growing trend is far from saturating when the memory access latency is 1000
cycles. This makes us believe that a more aggressive machine, able to support a
higher number of in-llight instructions, will still provide a better performance.

5 Related Work

The first step in the design of our kilo-instruction architecture [3] was using
checkpointing as an efficient way to control and inanage the use of critical re-
sources inside the processor. We propose to checkpoint critical long-latency in-
structions, which allows to create a very large virtual ROB, while actually us-
ing a small physical one. This multi-checkpointing mechanisms allows to release
physical registers early and to remove load instructions early from the load/store
queue. In addition, the multi-checkpointing mechanism is used to release instruc-
tions from the ROB early, which leads to an architecture where the classical ROB
is essentially unnecessary [5].
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Cherry [9] is another checkpointing scheme that was developed in paral-
lel with the kilo-instruction processor. Instead of using a multi-checkpointing
mechanism, Cherry is based on a single checkpoint outside the ROB. The ROB
is divided in two regions: the region occupied by speculative instructions and
the region occupied by non-speculative instructions. Cherry is able to release
registers and load /store queue entries early in the ROB area not subject to mis-
speculation, providing precise exception handling using the checkpoint. On the
other hand, the instructions belonging to the region subject to misspeculation
(like speculative instructions after a non-resolved branch prediction) still depend
on the reorder buffer to recover the correct state in case of misspecualtion, and
so they are not able to release their corresponding resources.

A later proposal based in checkpointing is runahead execution [13], which
follows the conceptual path of [9]. This technique creates a checkpoint of the
architectural state when the head of the reorder buffer is reached by a load that
has missed in the second level cache. In addition, the processor start execut-
ing instructions in a special mode using a bogus result for the load. When the
load instruction actually completes, the processor returns to the normal mode,
restoring the checkpoint. The first execution provides useful knowledge, like ac-
curate data and instruction prefetches, that improves the performance during
the second execution.

6 Conclusions

Tolerating large memory access latencies is a key topic in the design of future pro-
cessors. Maintaining a high amount of in-flight instructions is an effective mean
for overcoming this problem. However, increasing the number of in-flight instruc-
tions requires up-sizing several processor structures, which is is impractical due
to power consumption, area, and cycle time limitations. The kilo-instruction
processor is an affordable architecture able to support thousands of in-flight
instructions. Our architecture relies on an intelligent use of the processor re-
sources, avoiding the scalability problems caused by an excessive increase in the
size of the critical processor structures. The ability of maintaining a high number
of in-fight instructions makes the kilo-instruction processor an efficient archi-
tecture for dealing with future memory latencies, being able to achieve a high
performance even in the presence of large memory access latencies.
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